ИИ на IT-Регате: реальные кейсы от предпринимателей и IT-специалистов. Читайте на Cossa.ru

Вчера в 15:43

ИИ на IT-Регате: реальные кейсы от предпринимателей и IT-специалистов

Инсайты с AI-воркшопа на воде.

В Барселоне завершилась IT-Регата — мероприятие, где предприниматели и IT-специалисты совмещают парусные гонки и обмен профессиональным опытом.

Главной темой в этот раз стал искусственный интеллект и его применение в реальных задачах: от бытовых привычек до оптимизации бизнес-процессов.


       

Алексей Кулаков

CEO JetStyle

«ИИ — это инструмент, который появился у всех нас сразу. У каждого свой уровень энтузиазма и опыта. Но ясно одно: учиться придётся всем — и лучше всего делать это вместе».

Именно он выступил модератором трёхдневного воркшопа, во время которого участники делились опытом использования ИИ в личных и рабочих целях. Затем они объединились в группы и в течение нескольких сессий разрабатывали собственные инструменты на базе ИИ.

Своими кейсами поделились: Алексей Кулаков (JetStyle), Наталья Голованова (EPAM), Евгений Кузьменко (Omni. Sale) и Яков Гринемаер (grinemaer.pro). Мы внимательно послушали выступления и собрали для вас самое интересное.

Алексей Кулаков: как работать с ИИ без хаоса

Алексей Кулаков, CEO JetStyle и модератор ИИ-воркшопа, открыл сессию с простой, но точной мыслью: ИИ — это не «волшебная кнопка», а орган мышления и производства.

В качестве примера — личная «сага» подготовки к воркшопу, где Алексей показал, как использовать ИИ, чтобы справиться с тревожной прокрастинацией.

Оказалось, что стандартные советы из интернета слишком абстрактны и не помогают, когда нужно сосредоточиться здесь и сейчас. Алексей предлагает продолжить и подойти к работе с ИИ как к инженерной задаче: важна не «магия модели», а структура промпта, контекст и критерии — как при проектировании архитектуры системы или написании кода.

На этом этапе ответы ИИ становятся заметно содержательнее: они опираются на проверенные научные подходы и дают основу, которую как минимум стоит рассмотреть и адаптировать под задачу.

Несколько уточняющих запросов — и вместо расплывчатых советов появляются чёткий алгоритм и наглядная схема процессов. Такой системный подход помогает упорядочить работу с ИИ и избежать хаоса.

Больше практических подходов по работе с ИИ

Агенты вместо чатов

Для длительных проектов и сложных задач необходимо использовать не просто чат-модель, а агента. В отличие от чатов, где быстро заканчивается контекст, у агента есть память, он может работать с внешними сервисами (поиск, календарь, базы данных) и сохранять данные.

Пример: за час можно собрать рабочий веб-инструмент на платформе Replit с базой данных и хостингом «из коробки».

Deep Research: методика поиска по научным источникам

Deep Research — это методика, основанная на поиске научных данных в авторитетных источниках.

  • Определите области науки и корпус терминов.

  • Ищите информацию в Q1/Q2-журналах (верхний квартиль).

  • Требуйте от ИИ ссылки и методологию для проверки данных.

NotebookLM: работа с собственными источниками

NotebookLM позволяет загружать собственные PDF-файлы и отчёты, чтобы ИИ отвечал только по доверенному корпусу данных. Это полезно для рыночной аналитики, когда нужно сначала получить «чистую» картину, а затем добавить интервью и эксперименты.

Структурные промпты и фиксация опыта

Алексей подчеркнул, что хороший промпт — это не просто «заклинание», а метод работы, который помогает ИИ эффективно справляться с задачами.

Как это работает:

  • Для диаграмм: попросите модель генерировать Mermaid-код, который потом можно визуализировать в онлайн-редакторах, таких как Obsidian.

  • Для иллюстраций: задавайте смешанные стили, чтобы сделать картинку менее узнаваемой как «ИИ-рисунок».

Что делать с «галлюцинациями»?

В финале выступления Алексей поднял тему «галлюцинаций» — ситуаций, когда ИИ выдаёт правдоподобные, но выдуманные ответы. Он показал, как с этим работать системно: чётко задавать рамки и разделять зоны ответственности между человеком и моделью.

Такой подход помогает снизить риск ошибок и выстраивать взаимодействие с ИИ осознанно — как с инструментом, а не источником неконтролируемых ответов.

Наталья Голованова: ИИ в продакт-менеджменте и обучении

Наталья Голованова, Product Manager EPAM, поделилась опытом применения ИИ в двух направлениях: обучении сотрудников и управлении жизненным циклом разработки ПО (SDLC).


       

Наталья Голованова

Product Manager EPAM

«В личных проектах можно подключиться позже. Но в Enterprise-контексте клиенты ждут эффекта здесь и сейчас — быстро и дёшево».

Ключевые инициативы

English Assessment: оценка уровня языка с помощью ИИ

Наталья рассказала о системе, построенной на базе Claude 3.5, Google STT/TTS (speech-to-text и text-to-speech) и собственной архитектуры. Система помогает компании определять уровень владения языком по шкале CEFR с точностью до 0,5 уровня.

Как это работает:

  • Система проводит голосовой диалог с автоматическим распознаванием и синтезом речи, чтобы определить уровень.

  • Валидация началась с 500 тестов, затем масштабировалась до 5 000. Ежемесячно проводится 500–1 700 тестов.

  • Средняя ошибка при оценке уровня — около 0,5 балла по шкале CEFR.

Наталья рассказала о внедрении ИИ-ментора в образовательный процесс. ИИ помогает обучающимся на курсе, задавая уточняющие вопросы и объясняя «почему» тот или иной ответ правильный.

SDLC: улучшение процессов разработки ПО

Внедрение ИИ в процессы разработки ПО дало значительные результаты. Вот как ИИ улучшил различные этапы жизненного цикла разработки:

  • Требования (BA) формулируются на 52% быстрее.

  • Архитектурные документы создаются в 2 раза быстрее с использованием шаблонов.

  • Юнит-тесты и тест-кейсы генерируются мгновенно.

  • Code Review помогает сократить время на проверку кода до 80%. Однако стоимость проверки одного комита в крупном продукте может превышать 10 $.

Несмотря на значительную экономию времени, экономика внедрения ИИ требует внимательного контроля — для крупных проектов это может быть дорогостоящим.

Продакт-менеджмент без BA на старте

Наталья также поделилась тем, как ИИ помогает в продакт-менеджменте, когда на старте проекта нет Business Analyst (BA). ИИ помогает создавать «feature cards» и анализировать метрики успеха.

Как это работает:

  • Личный стек промптов позволяет генерировать описание фичи, гипотезу, метрики успеха, а также делить задачу на сториз.

  • Важно, что решение о приоритетах происходит через голосование стейкхолдеров (R&D, университеты, клиентские команды).

  • ИИ помогает создавать быстрые концепты с дизайнером, ориентируясь на сценарии, а не на картинки ради картинок.

Евгений Кузьменко: как менеджерам выжимать максимум из ИИ

Сооснователь Omni. Sale (150+ сотрудников) Евгений Кузьменко провёл внутренний опрос и выяснил: главный барьер для использования ИИ — не отсутствие инструментов, а неумение правильно ставить задачу.


       

Евгений Кузьменко

Cооснователь Omni.Sale

«Большинство думает, что им мешает отсутствие технологий. На деле мешает то, что люди не знают, что именно спрашивать у ИИ».

Он привёл несколько кейсов из практики компании.

Кейс 1. HR «за час»

Задача: нужно было подготовить профиль вакансии коммерческого директора, список вопросов для интервью, квартальные цели и чек-лист для найма.

Как сделали: с помощью одного диалога в ChatGPT получили все необходимые материалы — от описания вакансии до таблицы с чек-листом.

Результат: работа заняла около часа вместо многочасовых поисков шаблонов и созвонов между участниками процесса.

Кейс 2. Презентации под бренд за несколько часов

Раньше подготовка брендовой презентации занимала полторы недели и требовала участия аналитика, двух продактов и дизайнера.

Сейчас процесс выглядит так: в ChatGPT выстраивается структура будущей презентации: оглавление, тезисы, таблицы. Затем используется сервис Gamma для автоматической генерации слайдов (стоимость около 20 евро в месяц).

Евгений отмечает, что важно отправлять презентацию в Gamma по частям — слайд за слайдом. Иначе модель теряет контекст и начинает «фантазировать».

Плюс — в Gamma можно импортировать фирменный шаблон с нужными цветами, шрифтами и логотипами, а затем экспортировать готовую презентацию в PowerPoint для финальной ручной правки.

Кейс 3. Автоматизация поддержки и отзывов в e-commerce

Задача: ежедневно обрабатывается от пяти до семи тысяч заказов и десятки тысяч отзывов.

Как решили:

  • сначала собрали несколько тысяч исторических отзывов;

  • разметили их по тональности и темам (гарантия, доставка, качество товара и так далее);

  • обучили систему распознавать паттерны и формировать полуавтоматические ответы через API.

Главный принцип, по словам Евгения:

«Лучше ответить быстро и достаточно хорошо, чем молчать».

Работа идёт короткими итерациями, шаг за шагом — так система выдаёт более точные и стабильные ответы.

Практический приём

По опыту Евгения, с ИИ нужно работать поэтапно: разбивать задачу на небольшие блоки и постепенно уточнять запросы.


       

Евгений Кузьменко

Cооснователь Omni.Sale

«ИИ — как умный, но слегка подвыпивший друг. Если вывалить на него всё сразу, он запутается и даст хаотичный ответ. А если двигаться шаг за шагом, формулируя короткие и конкретные запросы, результат будет гораздо точнее и понятнее».

Яков Гринемаер: личный опыт с ИИ-диетологом

Предприниматель Яков Гринемаер решил проверить, насколько искусственный интеллект может помочь в повседневных задачах — например, в роли персонального диетолога. Для эксперимента он использовал ChatGPT, чтобы ставить цели по питанию и формировать рацион.

Сначала всё выглядело перспективно: ИИ помогал ставить задачи, разрабатывать меню, напоминал о тренировках и отслеживал прогресс.

Но быстро выявились три проблемы:

  • ошибки в распознавании порций достигали 50%;

  • отсутствие долговременной памяти у ChatGPT;

  • мотивационные напоминания были слишком нестабильными.

Чтобы компенсировать слабые места, Яков подключил дополнительные приёмы и инструменты:

  • Оценка уверенности. ИИ обучили отмечать, насколько он уверен в ответе. Если уверенность ниже 80%, модель просила уточняющую информацию.

  • Эталонные объекты. Для точности порций использовались простые ориентиры — например, тарелки стандартного размера.

  • CSV-хранилище. Данные о питании сохранялись в таблицах, чтобы потом можно было строить отчёты.

  • Система напоминаний. Так как встроенные напоминания работали плохо, Яков настроил собственный интерфейс с ручными уведомлениями.

Чтобы ИИ работал надёжно, вокруг него нужно выстраивать экосистему — с памятью, хранилищем данных и ручными настройками. Именно это показал опыт Якова.

Истории всех спикеров складываются в одну картину: чтобы ИИ стал хорошим помощником, к его внедрению и использованию нужно подходить системно.

Не менее важно — обсуждать реальные кейсы с коллегами и учиться друг у друга. В том числе для этого мы ездим на IT-Регаты!

Мнение редакции может не совпадать с мнением автора. Ваши статьи присылайте нам на 42@cossa.ru. А наши требования к ним — вот тут.

Телеграм Коссы — здесь самый быстрый диджитал и самые честные обсуждения: @cossaru

📬 Письма Коссы — рассылка о маркетинге и бизнесе в интернете. Раз в неделю, без инфошума: cossa.pulse.is

✉️✨
Письма Коссы — лаконичная рассылка для тех, кто ценит своё время: cossa.pulse.is