ATLEX
В этом разделе материалы размещаются пользователями сайта и публикуются после одобрения модератором. Редакция не несет ответственности за орфографические и другие ошибки, хотя и старается исправлять их по мере возможности.
Добавить свою заметку вы можете на этой странице.
24 июня 2013, 11:05
3371
0

Проблемы в интерпретации и визуализации данных аналитики

В этом мире можно посчитать и выразить цифрами все, что угодно. Вот только цифры сами по себе лишены смысла, смысл им придает их интерпретация.
Проблемы в интерпретации и визуализации данных аналитики

Главная проблема в интерпретации данных - это соотношение терминов, цифр и задач анализа. Уже писал о проблеме сравнения теплого и твердого в анализе активностей в социальных сетях:  "Коэффициент вовлечения", "Вовлечение аудитории", "Статистика Вконтакте".

Не нужно иметь семи пядей во лбу что бы с пустого места нарисовать как рост, так и падение, используя разный взгляд на одни и те же цифры, применяя дополнительные термины. Прежде чем оценивать цифры, нужно точно определить что же они нам говорят, что стоит за показателем, выражающимся этими цифрами. Под каждую задачу нужно подобрать свои показатели, и держатся именно их, не забывая при этом смотреть на цифры чуть шире, чем они подаются.

Но само по себе цифровое выражение показателей это еще полдела. Специалист всегда может разобраться с тем на что смотрит и что это значит, но часто для продвижения тех или иных цифр используют визуализацию и транслируют её людям совершенно не растирающимся в вопросе, не имеющих возможности взглянуть на цифры с самых разных сторон.

Как стать мастером сквозной аналитики?

Сквозная аналитика — главная магия интернет-маркетинга и самый мощный инструмент развития продаж без роста бюджета. Внедрив её, вы сразу поймёте, где клиенты теряются и что в вашем маркетинге надо улучшить.

Хотите освоить эту магию? Вот учебный курс где детально объясняют, как всё работает, как внедрять и как использовать на практике.

Спешите узнать подробности, регистрация скоро закроется!

Реклама

Поэтому предлагаю вам перевод англоязычного поста: Плюсы и минусы визуализации данных.

Часто можно услышать, что со статистикой можно доказать все что угодно: "Есть три вида лжи: ложь, откровенная ложь и статистика" Марк Твен. Хотя, многие говорят, что истинность этой цитаты тоже весьма сомнительна.

При работе с данными мы должны быть предельно осторожны. Исказить данные очень легко - стоит лишь добавить новые переменные, не учитывающие специфику показателей, которые выражают цифры. Исказить же данные при их визуализации еще проще, но при этом картинка стоит тысячи слов и убеждает людей намного сильней...

Карты - идеальный пример того, как визуализация может запутать людей. Возьмем карту Лондонского метро - классический пример карты-схемы.

Допустим, вы остановились в отеле в районе станции Lancaster Gate, и вам нужно добраться до вокзала Paddington, чтобы успеть на поезд. На основании этой карты, что бы вы делали? Скорее всего, пошли в Lancaster Gate, пересели на центральной линии Notting Hill Gate, а затем изменить добрались до Circle Line и там уже вышли на Paddington. Верно?

 

А, что бы вы сделали сейчас? Может проще добраться пешком? 

 

А что бы вы сделали теперь? Все еще хочется пройтись пешком, и кажется, что Paddington за углом? 

Одни и те же данные отображаются по разному и в итоге вводят вас в заблуждение. 

Подобные же проблемы возникают и в GA. Вот график электронной коммерции на котором мы видим падение:

 

Эта линия идет вниз, а значит нужно кого-то уволить! Нужно срочно что-то менять! Коэффициент конверсии не должен так падать! Он никогда так не падал!

 

Те же цифры, только в профиль. Уже не так страшно - не правда ли? 

Ваш доход растет несмотря на падение коэффициента конверсии. Коэффициент конверсии упал, но увеличился объем целевого трафика и в итоге выросло общее количество обращений и доход.

 

А непосредственно в отчете аналитики мы вообще не увидим с вами значительной драмы.

Визуализация данные мы должны быть уверенны в том, что и для чего мы выражаем в картинках. Готовя визуализацию мы должны иметь весь необходимый контекст.  Именно от нас зависит судьба данных - станут ли эти цифры ложью, или позволят донести до людей истину, поспособствавать принятию правильных решений.

PS

 1. Сами по себе цифры лишены смысла - осмысленными их делает лишь интерпретация.

 2. Интерпретируя данные мы должны четко понимать, что мы имеем на входе, а главное что и для чего мы представим на выходе.

 3. Никогда не принимайте решений бегло взглянув на интерпретацию данных и не углубившись хоть чуть-чуть в их историю и контекст.

✉️ Самое интересное шлём по почте, не чаще двух раз в неделю.

Не пропустите!

8147
Внимание, ваш сайт устарел: 5 вещей, от которых пора избавиться
Приходите на премьерную выставку-фестиваль коммерческого креатива PSI Russia!
42919
40+ SEO-сервисов для анализа сайта и конкурентов
4334
Нам весело, а им больно. Косяки в рекламе крупных брендов
4850
«Продактами не рождаются», — Анна Булдакова о шагах в профессию продакт-менеджера
6236
«Когда тебе приходит сотое за час письмо с заголовком „Ты что, дебил?“, начинаешь постигать дзен». И...
5497
Тест: как хорошо ты знаешь российский YouTube?
8161
В украинском Facebook разгорается скандал рестораторов. Следим за работой с репутацией
6483
6 полезных YouTube-каналов для изучения интернет-маркетинга
4496
Как бренды используют IGTV от Instagram: смотрим первые примеры
4250
Ад и рай дизайнера-интроверта. Как жить в мире экстравертов
6969
Примеры интересных digital-кампаний в Viber, WhatsApp и Telegram

Комментарии:

Ответить?
Реклама

Чем живёт digital.
Главное — в рассылке:




Вход на cossa.ru

Уже есть аккаунт?
Выбирай любой вариант входа:
Facebook Twitter Vkontakte

Используйте свой аккаунт в социальной сети Facebook или Twitter, чтобы пользоваться сайтом

Не забудьте написать email на странице своего профиля для управления рассылкой